본문 바로가기

공부/Modern Robotics

[Modern Robotics] 강좌 2: 로봇 기구학 #2

반응형


 

 
 
https://www.coursera.org/learn/modernrobotics-course2-ko

 

현대 로봇공학, 강좌 2: 로봇 기구학

Northwestern University에서 제공합니다. 로봇이 어떻게 작동하는지 궁금하신가요? 로봇공학 커리어에 관심이 있으신가요?로봇공학의 모든 하위 분야에서 사용되는 기초적인 수학적 모델링 기법을

www.coursera.org

 
 
Inverse kinematics(IK)the calculation of the joint configuration from the end effector frame configuration(postion+orientation).
●For n-revolute joint serial robots, $T_{sb}\in SE(3)\longrightarrow \theta\in\mathbb{R}^{n}$
●Widely used representations:

●Unlike the forward kinematics of serial robots, it can have ①a unique solution, ②multiple solutions, or ③no solution
●Some systems like the 6R PUMA or the Standford arm have analytic IK solutions. 
●Most systems don't have an analytical solution, or we can't find one. So, numerical methods are used.
└e.g. Newton-Raphson method, Method of optimization)
●Even in cases where an analytic solution exists, numerical methods are used to improve accuracy.
 
 
 
Newton-Raphson method: An iterative numerical method for finding a function's root using the only linear part of the Taylor series approximation.
●Main concept: Finding a guess error($\theta^{k+1}-\theta^{k}$) from the result error($x-g(\theta^{k})$). (My own explanation)
●Only one root is found at a single set of iterations, and the result depends on the initial root guess. (Root that is the closest to the initial guess)
●Three possibilities exist: ①Find the desired root, ②Find the undesired root, ③Fail to find root(Divergence)
 
For a algebraic equation $g(\theta)=x_{d}$, initial root guess $\theta^{0}$      ($\theta,x_{d}\in \mathbb{R}$):
Repeating $\theta^{k+1}-\theta^{k}=\left(\frac{\partial g}{\partial \theta}(\theta^{k})  \right)^{-1} \left\{x- g(\theta^{k}) \right\}$
 
For a matrix equation $g(\theta)=x_{d}$, initial root guess $\theta^{0}$      ($\theta,x_{d}\in \mathbb{R}^{n}$):
Repeating $\theta^{k+1}-\theta^{k}=J^{-1}(\theta^{k})\left\{x_{d}- g(\theta^{k}) \right\}$
 
 
 

(Moore-Penrose) Pseudo-inverse $A^{\dagger}$: A generalization of matrix inverse that exists for any matrix(even for non-square, singular matrix=noninvertible matrix).
 
For $A\in \mathbb{R}^{m\times n}$, $m\gt n$ (tall matrix), $A^{\dagger}=A^{T}(AA^{T})^{-1}$
For $A\in \mathbb{R}^{m\times n}$, $m\lt n$ (fat matrix), $A^{\dagger}=(AA^{T})^{-1} A^{T}$
 
●The matrix equation $Ax=b$ and the solution $x=A^{\dagger}b$ results in cases.
①If solutions exist, $x=A^{\dagger}b$ provides the solution with the smallest norm.
②If no solutions exist, $x=A^{\dagger}b$ provides the value that minimizes the error.
 
 
 
IK using Newton-Raphson method: Find a root of the IK matrix equation using the Newton-Raphson method.
●Main point: Convert result error transformation $T_{bd}\in SE(3)$ into result error twist $\nu\in\mathbb{R}^{6}$ with the matrix log of rigid-body motion.
$[\nu_{s}]=log(T_{bd}(\theta^{k}))=log(T_{sb}^{-1}(\theta^{k})T_{sd})$
●FK $T_{sb}(\theta)$ is needed.
 
Space frame: $\theta^{k+1}-\theta^{k}=J^{\dagger}_{s}(\theta^{k})\nu_{s}$
 
Body frame: $\theta^{k+1}-\theta^{k}=J^{\dagger}_{b}(\theta^{k})\nu_{b}$   (Generally used)
 

 
 
 
+)Modern Robotics book example 6.1 Matlab code.

 
 
 
 
 
 
Closed chain: Any kinematic chain that contains loops
●Delta robot, Stewart platform $\in$ Parallel mechanism $\in$ Closed chain
●Not all joints are actuated
●Joints satisfy loop-constraint-equations. This makes an additional Jacobian called Constraint Jacobian.
●As opposed to open chains, IK has a unique solution while FK can have multiple solutions.
 
 


========================================================================

정확한 정보 전달보단 공부 겸 기록에 초점을 둔 글입니다.
틀린 내용이 있을 수 있습니다.
틀린 내용이나 다른 문제가 있으면 댓글에 남겨주시면 감사하겠습니다. : )
========================================================================

반응형